ETY910 - Introduction to advanced computational methods in materials science

COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT	DEPARTMENT OF MATERIALS SCIENCE AND				
	ENGINEERING				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	ΕΤΥ910	10 SEMESTER 6			
COURSE TITLE	Introduction to advanced computational methods in materials science				
INDEPENDENT TEACHING ACTIV	VITIES if credits are awarded				
for separate components of the cour	se, e.g. lectures,	laboratory	WEEKLY	CREDITS	
exercises, etc. If the credits are awarde	ed for the whole of the course, TEACHING				
give the weekly teaching hours	s and the total credits HOURS				
		2	2		
Lectures		3	3		
Add rows if necessary. The organization of teaching and the teaching					
methods used are described in detail at (a).					
COURSE TYPE	Special back	ground, skills o	development	I	
general background, special background,					
specialized general knowledge, skills					
PREBECIUSITE COURSES:	ΝΟ				
I ANCHACE OF INSTRUCTION					
and EXAMINATIONS	UKEEN				
	NO				
15 THE COURSE OFFERED TO EDACMUS STUDENTS	NU				
EKA5MUS STUDENTS	http://www.matariala.uai.gr/ap/0.02.01.html				
COOKSE MERSILE (OKL)	<u>nttp://www.materiais.uoi.gr/en/0.02.01.html</u>				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

In the course, "Introduction to Advanced Computational Methods in Material Science" the student learns the modern computational theories that will enable him to study the atomic and electronic structure of a material using quantum mechanics. Starting from simple quantum mechanics problems, the course gradually proceeds to the complex materials' cases. The aim is to find the appropriate theories and approaches to describe the electronic structure of a material solving the Schrödinger's equation for a multi-particle system under constraints and conditions. These methods will allow the student to be able to calculate the structural, electrical, magnetic and optical properties of a material analytically or computationally through appropriate software.

Specifically at the end of the lesson the student should be able to:

- calculate the electronic structure of a crystal.
- calculate the energy eigenvectors and eigenvalues of a single molecule or its complexes.
- calculate the electronic structure of a periodic chain or a two-dimensional grid and investigating its metallic or semi-conductive or insulating behavior.

• calculate the magnetic moment of a material through the spin polarized electron density of states

• calculate the optical absorption of a molecule or semiconductor.

The active participation of students in exercises and problems and their further familiarity with the calculation programs in the computer plays an important role.

General Competences					
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma					
Supplement and appear below), at which of the following does the course aim?					
Search for, analysis and synthesis of data and information,	Project planning and management				
with the use of the necessary technology	Respect for difference and multiculturalism				
Adapting to new situations	Respect for the natural environment				
Decision-making	Showing social, professional and ethical responsibility				
Working independently	and sensitivity to gender issues				
Team work	Criticism and self-criticism				
Working in an international environment	Production of free, creative and inductive thinking				
Working in an interdisciplinary environment					
Production of new research ideas	Others				

- Working independently
- Criticism and self-criticism
- Production of free, creative and inductive thinking
- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Team work

(3) SYLLABUS

The course "Introduction to Advanced Computing Methods in Material Science" contains:

- Basic principles and problems of quantum mechanics. Schrödinger Equation, Square Well Potential, Periodic Square-Well Potential, Hydrogen atom
- Introduction to ab initio calculations: Born-Oppenheimer approach, One-electron approach, Hartree method, Hartree-Fock method. Density Functional Theory. Augmented Plane Wave theory
- 3. Semi-Empirical Calculations: Linear Combination of Atomic Orbitals (LCAO) Theory of Tight Binding and Density Functional Binding Approach.
- 4. Applications in atomic and electronic structure calculations as well as predicting macroscopic properties of periodic systems, biological molecules and nanoscopic materials.

DELIVERY Face-to-face, Distance	In class, lectures	
USE OF INFORMATION AND	Electronic platform e-course	
COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education communication with students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are	Lectures	27
described in detail. Lectures seminars laboratory practice	Fieldwork/Laboratory	12
fieldwork, study and analysis of bibliography,	practice	

(4) TEACHING and LEARNING METHODS - EVALUATION

tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Self-study/ project/essay writing Course total	36
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short- answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	LANGUAGE OF EVALUATION METHOD OF EVALUATION: (i) Final written exa (ii) Public presentat	: Greek amination ion

(5) ATTACHED BIBLIOGRAPHY

-Suggested bibliography:

- Computational Physics II, A. Andrioths, 1999, Anikoyla press
- Solid State Physics E.N. Oikonomou, Crete University Press, 1997, Hrakleio

-Related academic journals: